Q-classical Orthogonal Polynomials: a General Difference Calculus Approach
نویسندگان
چکیده
It is well known that the classical families of orthogonal polynomials are characterized as the polynomial eigenfunctions of a second order homogenous linear differential/difference hypergeometric operator with polynomial coefficients. In this paper we present a study of the classical orthogonal polynomials sequences, in short classical OPS, in a more general framework by using the differential (or difference) calculus and Operator Theory. The Hahn's Theorem and a characterization Theorem for the q-polynomials which belongs to the q-Askey and Hahn tableaux are proved. Finally, we illustrate our results applying them to some known families of orthogonal q-polynomials.
منابع مشابه
Classical Orthogonal Polynomials: a General Difference Calculus Approach
It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator with polynomial coefficients. In this paper we present a study of classical orthogonal polynomials in a more general framework by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified...
متن کاملM ay 2 00 7 Classical orthogonal polynomials A general difference calculus approach
It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator. In this paper we present a study of classical orthogonal polynomials in a more general context by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthe...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملRecurrence equations and their classical orthogonal polynomial solutions
The classical orthogonal polynomials are given as the polynomial solutions pnðxÞ of the differential equation rðxÞy00ðxÞ þ sðxÞy0ðxÞ þ knyðxÞ 1⁄4 0; where rðxÞ is a polynomial of at most second degree and sðxÞ is a polynomial of first degree. In this paper a general method to express the coefficients An; Bn and Cn of the recurrence equation pnþ1ðxÞ 1⁄4 ðAnxþ BnÞpnðxÞ Cnpn 1ðxÞ in terms of the g...
متن کاملGeneralization of matching extensions in graphs-combinatorial interpretation of orthogonal and q-orthogonal polynomials
In this paper, we present generalization of matching extensions in graphs and we derive combinatorial interpretation of wide classes of orthogonal and q-orthogonal polynomials. Specifically, we assign general weights to complete graphs, cycles and chains or paths defining matching extensions in these graphs. The generalized matching polynomials of these graphs have recurrences defining various ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009